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drome maps to chromosome 13q14. Am J Hum Genet 59: ulations in which a number of rare genetic disorders are
613–619 found at particularly elevated frequencies. When their

Reid CS, Stamberg J, Phillips JA (1983) Monosomy for distal time of appearance is known, founder effects can be
segment 6p: clinical description and use in localizing a re- better understood in the context of the social and demo-
gion important for expression of Hageman factor. Pediatr graphic history of the populations (Roberts 1968; Mo-
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tulsky 1995; Risch et al. 1995a, 1995b; Zoosman-Dis-Semina EV, Reiter R, Leysens NJ, Alward WLM, Small KW,
kin 1995; Labuda et al. 1996).Datson NA, Siegel-Bartelt J, et al (1996) Cloning and char-
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novo mutation. The mutation is then in extreme linkageGenet 14:392–399
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lial syndrome. Trans Am Ophthalmol Soc 81:736–84 founder haplotype, a ‘‘genetic signature’’ of the founder

Walter MA, Mirzayans F, Mears AJ, Hickey K, Pearce WG chromosome. Because of recombinations, a fraction of
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If polymorphic loci in the haplotype recombine at a rate
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ln P Å 0ug . (1)

In this equation, relating time, recombination rate, and
the divergence (lnP) of haplotypes, we recognize the ge-

Am. J. Hum. Genet. 61:768–771, 1997 netic clock, by analogy to the molecular clock (Zucker-
kandl and Pauling 1965) that relates time, mutation rate,
and the divergence of genes.The Genetic Clock and the Age of the Founder Effect

In a recent study of idiopathic torsion dystonia (ITD),in Growing Populations: A Lesson from French
an autosomal dominant disease, equation (1) was ap-Canadians and Ashkenazim
plied to estimate the age of the founder effect in Ashke-

To the Editor: nazi Jews from eastern Europe (Risch et al. 1995b).
Strong linkage disequilibrium over a considerable ge-Use of the genetic clock with molecular data allows anal-

ysis of the occurrence of genetic events in the context netic distance around the ITD locus indicated a founder
effect whose origin was estimated by the authors as be-of population histories. These analyses suggest that the

majority of disease mutations present at variable fre- ing at the middle of the 17th century (time range 1400–
1750). At that time however, the Jewish population ofquencies among human populations have been spread

by neutral mechanisms related to migration and demo- eastern Europe was already reaching hundreds of thou-
sands, and numbered §10,000 individuals in 1400 (Bar-graphic expansion. In human genetics, ‘‘founder effect’’

refers to the presence of genetic disorders that are either navi 1992; Beinart 1992; Motulsky 1995; Risch et al.
1995a, 1995b; Zoosman-Diskin 1995). This would putendemic to an isolated population or very rare elsewhere

(Diamond and Rotter 1987); it is observed in small hu- the initial ITD mutation frequency at 1004–1005, too
low to explain, on the ground of demographic growthman isolates such as Tristan da Cunha (Roberts 1968)

and in populations as large as that of Europe (Kerem et alone, its current frequency of 2–6 1 1003. To resolve
the discrepancy between the demographic and the ge-al. 1989). New reports rekindle interest in the origin

of founder effects: Do they involve neutral mechanisms netic data in the case of ITD, social selection was pro-
posed, whereby the present-day Ashkenazim descended(migration and drift)? Are they due to a selection in

response to the environmental challenge or to other from a smaller, wealthier fraction of the original popula-
tion, a fraction with the higher survival rate (Motulskycauses? Molecular approaches provide new insights into

the underlying mechanisms. Here we discuss the use of 1995; Risch et al. 1995b).
Social selection could have influenced the genetic pro-linkage-disequilibrium data to estimate the age of

founder effects in Ashkenazi Jews from eastern Europe file of the present-day Ashkenazi population and seems
to provide a good collective explanation for an elevated(Motulsky 1995) and in French Canadians from the

Charlevoix-Saguenay region (De Braekeleer 1991), pop- frequency of a number of unrelated recessive disorders
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(Motulsky 1995). However, it is difficult to imagine that with demographic data pointing to the origin of the
founder effect at the beginning of the Charlevoix coloniza-the impact of social selection was sufficiently dramatic

to account for a 1,000-fold frequency increase (i.e., from tion.
Use of the Luria-Delbrück correction in the case of ITD1005–1004 to 1002–1001) of a mutated allele at a dozen

or so disease loci scattered all over the genome. At least shifts the dating of the underlying founder event back by
almost 2 centuries (g0 Å 7 for u Å .023 or .018 of thenine autosomal recessive diseases with carrier frequen-

cies as high as 1/100–1/20 are known among Askenazim haplotypes considered, under the assumption that d Å .4
[Risch et al. 1995a] and that there are 25 years/generation).(Motulsky 1995). Recently described mutations in the

breast cancer–susceptibility genes (BRCA) have to be Thus, contrary to the original estimation, the founder ef-
fect could have started as early as 1200. Taking the re-included in these considerations as well (e.g., 6174delT

in BRCA2 and 185delAG in BRCA1, present in this ported values in a study of familial dysautonomia in Ash-
kenazim (Blumenfeld et al. 1993) (P Å .54, u Å .03), wepopulation at the 1.4% and 1% level, respectively [re-

viewed in Tonin et al. 1996]). Given these frequencies, estimated the corrected age at 27 generations (g0 Å 6,
under the assumption that d Å .4). This suggests that thethe founder effect would be more plausible if it had

started earlier, in the period when the Jewish population origin of the founder effect occurred in the midst of the
13th century, consistent with the corrected ITD dataof central and eastern Europe was much less numerous

(Barnavi 1992; Beinart 1992). Indeed, it is possible that above. Such dating coincides with the time of early migra-
tions of Jews from Ashkenaz (medieval Germany) to cen-the age estimated from equation (1) is an underestimate:

attention has been drawn to the fact that, when applied tral Europe. The work of Neuhausen et al. (1996), on
BRCA1 mutations, corroborates well with these conclu-to growing populations, the genetic clock ticks more

slowly than expected (Luria and Delbrück 1943; Häst- sions: these authors estimate that ‘‘the most likely date for
the origin of the 185 del AG mutation found in the Ash-backa et al. 1992; Kaplan et al. 1995; Labuda et al.

1996); in other words, equation (1) is likely to lead to kenazi Jewish population is Ç1235 a.d.’’ (Neuhausen et al.
1996, p. 275); however, they admit that their result de-an underestimation of either u or g, from P. This effect

has been originally described for mutations in growing pends on a number of assumptions, such as a uniform
relationship between recombination rate and physical dis-bacterial cultures and can be corrected for as proposed

in the original study by Luria and Delbrück (1943). In tance or equal mutation rates among microsatellite mark-
ers of the same class. Therefore, we can neither considerthe context of human genetics, this correction was first

applied to estimates of the distances u in the linkage- it as a strong support for our findings nor critically com-
pare both approaches.disequilibrium mapping study of diastrophic dysplasia

in Finland (Hästbacka et al. 1992). In turn, when genetic The lesson from the analysis of the colonization of Char-
levoix (Labuda et al. 1996) shows that, although the earlydistances are known and we ask about the age of the

founder effect, its likely value corresponds to g / g0, migrations provide opportunities for sampling of rare mu-
tations, it is the demographic expansion that follows whichwhere g is the number of generations estimated from

equation (1), and the correction establishes the founder effect. Within a few generations
the contribution of the first migrants to the genetic pool
becomes sufficiently large to withstand influx of later mi-g0 Å 01/d ln(u fd) , (2)
grations and to allow some of the initially sampled rare
alleles to be maintained at high frequencies. Such a demo-where fd Å ed/(ed 0 1) in a population growing at a

rate d (note that, for small d values, fd É 1/d) (for details, graphic outcome is illustrated in figure 1. The model uses
the simple assumption that migrants arriving at differentsee Labuda et al. 1996). This approach was used in a

linkage-disequilibrium study of pseudo–vitamin D– time periods have the same probability to reproduce. In
this example, new settlers arrive in three migration wavesdeficiency rickets (PDDR), to estimate the age of the

founder effect in French Canadians from Charlevoix-Sa- of 100 individuals each every 50 years (i.e., at g Å 0, 2,
and 4). The population is growing at the rate d Å .6 (noteguenay in northeastern Québec (Labuda et al. 1996). Ap-

proximately a dozen rare genetic conditions with carrier that d Å .4 was used above [Risch et al. 1995a], whereas
d Å .8 was characteristic of the early population of Char-rates £1/21 are common in this population, resembling

the pattern seen in Ashkenazim (De Braekeleer 1991; Mo- levoix [Labuda et al. 1996]). The third wave of settlers
contributes only 6.5% to the population, which, on itstulsky 1995; Labuda et al. 1996). The analysis of PDDR

haplotypes by use of equation (1) indicates a founder effect arrival, numbers 1,544 individuals; its genetic composition
is dominated by descendants of the first and second wavesstarting around 1800, when the population of Charlevoix

already numbered a few thousand (Bouchard and De of settlers, at the level of 71.8% and 21.6%, respectively.
Thus, if unique copies of rare disease mutations were pres-Braekeleer 1991; Labuda et al. 1996). The discrepancy

disappears, however, when the corrected g / g0 age is ent among the first group of settlers, their initial population
frequency of 1% would only go down to 0.7%. Withused: the genetic clock with the correction is congruent
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as suggested by likelihood studies (Kaplan et al. 1995), the
Luria-Delbrück correction may be conservative (i.e., g/ g0

is an underestimate); the founder effect thus would be
older rather than younger. In any case, the genetic data
are consistent with the historically plausible scenario in
which a founder effect originates in a small group of suc-
cessful migrants. The presence of Jews in medieval Poland
at the end of 12th century is documented by coins with
Hebrew inscriptions minted under the reign of Mieszko
III the Old. These early migrations could have been encour-
aged by new opportunities in central and eastern Europe,
related to the rise of towns in the developing new states
(Davies 1984). In contrast, in the West the conditions wereFigure 1 Relative contribution of subsequent waves of migra-
not conducive: persecutions of Jews increased at the timetions to the genetic pool of an expanding population (d Å .6).
of the Crusades and intensified during the outburst of bu-
bonic plague during the middle of the 14th century, re-
sulting in the decimation of Jewish communities. On Polishfurther growth of the population (fig. 1), any new immigra-

tion would have to be extremely massive to radically soil, privileges granted in 1264 (Kalisz) and 1334 (Cracow)
indicate the growing importance of Jews; their expansionchange its genetic content. Therefore, the rare variants

sampled among first settlers are expected to last and to be eastward is marked by privileges obtained in 1364 (Lesser
Poland and Red Russia) and 1388 (Lithuania). The favor-maintained at levels close to the starting frequencies. A

simplifying assumption above—that everybody has the able circumstances continued in the Jagiellonian common-
wealth, uniting the Polish Crown, Lithuania, and Ukraine,same reproductive chances—is conservative. In reality, the

smaller the number of first settlers, the more likely it is leading to the great demographic expansion of the Ashke-
nazim in this part of Europe (Davies 1984; Barnavi 1992;that only a fraction of their genetic pool will be represented

in future generations. In other words, because of genetic Beinart 1992). They largely outnumbered their fellows in
the West, eventually reaching several millions in the earlydrift the initial frequency of sampled rare variants is ex-

pected to be higher than what the model in figure 1 sug- 20th century. Thus, although other factors, such as social
or other forms of selection, could have played a role there,gests; some of the rare disease alleles are also lost in the
the migration and demographic expansion requires noprocess. This reinforces the effect of migration and subse-
other assumptions to explain the founder effect in Ashke-quent demographic expansion illustrated in figure 1. The
nazim.impact of genetic drift is reduced with the rising number

Implementing the Luria-Delbrück correction in the ap-of rare variant copies; the population growth stabilizes the
plication of the genetic clock appears to provide morefounder effect.
realistic estimates of the age of founder effects, makingA material illustration of the model presented in figure
these genetic events more understandable in the context1 is provided by demographic events from the well-docu-
of population histories. This is an easy, pocket-calculatormented history of Charlevoix (Gauvreau et al 1991). Be-
approach to correct the genetic clock for the effect of atween 1675 and 1850 this region was colonized by 599
growing population, which is consistent with coalescencesettlers, 15 of which arrived before the turn of the 17th
(Thompson and Neel 1997) and likelihood (Kaplan et al.century. By the middle of the 19th century the population
1995) data. Most present-day human populations under-grew to 18,000 and started to expand toward the shores
went demographic expansion since the Neolithic; recurrentof the Saguenay River. At that time, the contribution of
migrations provided opportunities for sampling of rarethe first 15 settlers to the genetic pool, estimated by appli-
disease mutations and their frequency increase (Diamondcation of the same rules as are used in figure 1, was 22.5%
and Rotter 1987). Analysis and understanding of the(the contribution of the first 67 settlers was 58%). The
mechanisms underlying founder effects is an importantopportunity for sampling rare mutations is evident: the
aspect of genetic epidemiology dealing with the growinginitial carrier rate of 1/15 (6.7%) becomes 1.5% in 1850.
number of known mutations responsible for simple andOur dating points to the origin of the founder effect in
complex traits and diseases.Ashkenazim at the time of their early migrations from

western Europe eastward. Taken with caution, the familial DAMIAN LABUDA,1 EWA ZIȨTKIEWICZ,1

dysautonomia data indicate a time period between the AND MAŁGORZATA LABUDA2

11th and 15th century; ITD, between the 13th and 16th 1Centre de Cancérologie Charles Bruneau, Centre de
century. The difference may be fortuitous, but we actually Recherche Hôpital Sainte-Justine, Département de
expect ITD, which is less frequent, to be introduced later Pédiatrie, Université de Montréal, and 2Centre de

Recherche Hôpital Notre-Dame, Montréalthan diseases with carrier frequency §1%. Furthermore,
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